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Abstract

Dynamical aspects of RR intervals have often been analyzed by means of linear and non-
linear measures. The goal of this study was to analyze binary sequences, in which only the
dynamical information is retained, by means of two different aspects of regularity. RR
interval sequences derived from 24-hour ECG recordings of 118 healthy subjects were
converted to symbolic binary sequences which coded the beat-to-beat increase or decrease in
RR interval. Shannon entropy was used to quantify the occurrence of short binary patterns
(length N=5) in binary sequences derived from 10-minute intervals. The regularity of the
short binary patterns was analyzed on the basis of approximate entropy (ApEn). ApEn had a
linear dependence on mean RR interval length, increasing irregularity occurring at longer RR
interval length. Shannon entropy of the same sequences showed that the increase in
irregularity is accompanied by a decrease of occurrence of some patterns. Taken together, this
indicates that irregular binary patterns are more probable when the mean RR interval
increases. The use of surrogate data confirmed a nonlinear component in the binary sequence.
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Analysis of two consecutive 24-hour ECG recordings for each subject demonstrated good
intraindividual reproducibility of the results. In conclusion, quantification of binary sequences
derived from ECG recordings reveals properties that cannot be found using the full
information of RR interval sequences.

Index terms:
heart period dynamics, symbolic dynamics, approximate entropy, Shannon entropy, nonlinear
dynamics, surrogate data

I ntroduction

In recent years linear measures of heart rate variability (HRV) have been applied in a wide
range of contexts, leading to a well established diagnostic tool with more or less accepted
standards (16;17;30). Today HRV is not only applied in cardiac diseases but in diseases that
generally affect the autonomic nervous system (ANS). However, the influence of the
sympathetic and parasympathetic branch of ANS on linear measures of HRV as well as the
independent prognostic value of these measures with respect to high risk patients with cardiac
diseases is still a matter of investigation (6;9;12). On the other hand, assessing HRV with
nonlinear measures may supply information different from that of linear measures with the
promise of better risk stratification (13;32-34). But in most cases it is difficult to interpret
these complementing findings in one unifying picture. In this study we examine dynamical
properties of heart periods with two different nonlinear approaches that can be regarded as
two complementing aspects of dynamical properties. The results also shed a new light on the
interpretation of power spectral measures of HRV.

Different approaches lead to nonlinear measures of HRV. In nonlinear dynamics theory, the
so-called state space is reconstructed from sequences of heart beat periods that are generally
defined as the time duration between successive R waves in the electrocardiogram (ECG), the
RR tachogram. In a second step the state space and the dynamical behaviour of the
reconstructed dynamics can be quantified (e.g. with measures of dimension or lyapunov
exponents). For an overview see e.g. (10). Practically, the sequences of heart periods are
short, noisy and often nonstationary. Thus the application of nonlinear measures to ECG
recordings may lead to spurious indications of chaos (3;7). However, one may guardedly say
that this approach has yielded evidence of nonlinearities. Indeed, powerful quantities for
describing heart period dynamics and for stratification of high risk patients are still lacking
7.

Another approach to nonlinear measures of HRV is the quantification of complexity from the
point of view of information theory. To this end, the sequence of heart periods can be
analyzed with the help of entropy measures like Shannon entropy or renormalized entropy
(11;25). They are often used in conjunction with the concept of symbolic dynamics or coding
theory, i.e. reducing the amount of information by transforming the original time series into a
symbolic sequence with a small set of symbols (8). These measures proved to be useful in
detection of patients at high risk for sudden cardiac death (34). Another entropy measure for
quantification of regularity in a time series is the approximate entropy (18;24). Approximate
entropy has the ability to detect subtle differences in heart period dynamics that cannot be
observed with commonly used linear measures (14;15). Recently, the evaluation of
approximate entropy for RR tachograms derived from 24-hour ECG recordings led to the
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suggestion of phase transitions, in the notion of synergetics, between day time and night time
heart period dynamics (2). It has aso been shown that changes in fetal heart period
complexity during pregnancy can be documented using ApEn (31). Though approximate
entropy has been introduced for symbolic dynamics (20), the application of approximate
entropy to symbolic dynamics derived from physiological data has not been performed yet.
The goal of this study was to examine binary sequences derived from Holter recordings of
healthy subjects in order to determine their pure dynamical properties. To this end, a
‘dynamic’ or differential symbolization is used (1). Such a transformation into binary
sequences is of particular interest because this method extracts solely dynamical properties of
the RR series, disregarding all information influenced by the absolute values of the RR
intervals, eg. mean RR interval, RR standard deviation and other measures of RR interval
variability. Approximate entropy is used as a nonlinear measure of irregularity of short binary
sequences to quantify their dynamical properties. Shannon entropy quantifies regularity on a
larger scale of the symbolic dynamics under consideration and thus helps to make the results
more precise. It is still unknown whether binary coding preserves nonlinear properties of the
original RR tachogram. To test the hypothesis that the binary representation of RR dynamics
still contains some important nonlinear properties, we make use of surrogate data. To
demonstrate the intraindividua reproducibility of the binary approximate entropy, two
consecutive 24-hour ECG recordings for each subject are analyzed.

M ethods

Subjects

The subjects for this study were drawn from a previous study in which 121 healthy subjects
were included (5). Three subjects were excluded from this analysis due to missing data. Two
consecutively recorded 24-hour ECGs (A and B) were available for the remaining 118
subjects (age: 20 to 40 years, mean + sd: 27 + 6 years, 78 females). The 24-hour ECGs were
recorded with Oxford FD3 solid state recorders (Oxford Instruments, Abingdon, UK) with
simultaneous R wave detection and a maximum sampling rate of 1024 Hz during the QRS
complex. This permitted a maximum resolution of 1 ms for the detection of the R waves. An
Oxford Excel ECG analyser allowed the visual inspection of the automatically detected R
waves. Generally, the number of ectopic or unrecognized beats was small (<1%) and thus
such beats were not replaced or inserted. For further analysis the R times were written to a
binary datafile that was exported to a Persona Computer for further analysis.

Construction of symbolic sequences

For each 10-minute interval in the 24-hour ECG (max. 144 intervals/recording) the times
between subsequent R waves (RR intervals or heart periods) formed the corresponding RR
tachogram. Transformation of each 10-minute RR tachogram into a binary sequence was done
as follows (see figure 1):

Differences RR ,, - RR >0, i.e. adecreasein heart rate, are setto 1's.

Differences RR ,, - RR, £0, i.e. anincreasein heart rate, are set to 0's.

The binary sequences are quantified by estimation of two different entropies. approximate
entropy and Shannon entropy. Each entropy reveals different aspects of the binary sequence
under consideration. Approximate entropy is a nonlinear measure of irregularity in time series
(24); Shannon entropy quantifies the amount of information in time series (28).



Cysarz et. al.: Entropiesin heart period dynamics H814-9 4

symbolic sequence 1 1 1 0 0 1 1
differential RR tachogram [ms] +2 +24  +33 -36 -16 +47 +39
RR tachogram [ms] 891 893 917 950 914 898 945 984
ECG

Fig.1 Example of the construction of symbolic sequences from ECG recordings keeping
the dynamical aspects.

Approximate entropy

The goal of approximate entropy is to quantify irregularity or fluctuations in a time series on
the basis of Kolmogorov-Sinai entropy (21;23). It quantifies dynamical aspects of the time
series under consideration in a statistical manner. In the following, a short description of the
formal implementation of approximate entropy is given, for further details, see e.g. (18;22).
Given atime series (e.g. RR tachogram) with N data points u(2),u(2),...,u(N), sequences of
vectors X(D),...,X(N - m+1) are formed by defining X(i) = (u(i),u(i +2),...,u(i + m- 1)) .
The parameter m, the number of components in each vector, has to be fixed. In nonlinear
dynamics theory this would be interpreted as a ‘m-dimensiona state space reconstruction’.
Next, define the distance d(X(i),X(])) between two vectors X(i) and X(j) by the maximum
difference of al their scalar components:

d(X(), X(})) = MaX,y (UG +K- D) - u(j +k- 1)
Now let the ‘correlation sum’ of vector X(i) be
no.of j£N- m+1 suchthat d(X(i),X(j))Er

N- m+1 '
The parameter r (not to be confused with correlation coefficient r used below) acts like a filter
value: within resolution r, the numerator counts the number of vectors that are approximately
the same as a given reference vector X(i). The quantity C™(r) is called ‘correlation sum’,
because it quantifies the summed (or global) correlation of vector X(i) with all other vectors.
Next, define the mean logarithmic correlation sum of al vectors:

1 N-°m+1
F"(r)=——— a logC"
()= N Tme1 &109C70

C"(r)=

and the approximate entropy (ApENn):
ApEn(m,r,N)(u) =F ™(r)- F™(r), m31
ApEN(O,r,N)(u) =-F*(r).

ApEn(m,r,N)(u) measures the logarithmic frequency with which vectors with m components
that are close (within resolution r) remain close when increasing the number of vector
components by one. This is the key to a measure of irregularity: small values of ApEn
indicate regularity and large values imply substantial fluctuations or irregularity in a time
series u.

This concept can also be applied to short binary sequences or other symbolic dynamics. To
understand the notion of irregularity in binary sequences, consider the sequences 00000,
11111, 01010 and 10110. The first two sequences are easily identified as very regular
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sequences. In the third sequence 0's and 1's alternate and thus it is suitable to call this
sequence regular, too. Only the last sequence does not contain any symmetries or periodically
recurring subsequences, in other words this sequence is more irregular. This concept of
irregularity for binary sequences can be quantified using the approximate entropy.

Formally, if ApEn is applied to binary sequences consisting of 1's and O's the distance
d(X(i),X(j)) will be either 0 or 1. Thus it only makes sense to set the resolution r <1. To

keep things as easy as possible, we restrict ourselves to m=1. Next, the optimal length of
binary sequences to be quantified with ApEn has to be found. As pointed out in (20) the
evaluation of ApEn with m=1 is based on the calculation of the frequencies of the
subsequences {0, 1, 00, 01, 10, 11} in the binary sequence under consideration. In a random
binary pattern, the longer the binary sequence the higher is the probability that the
subsequences occur with amost the same frequency. This would aways lead to
approximately the same values of ApEn. Thus short binary patterns would be better suited to
produce ApEn values that can be distinguished from one another. In this work we analyze
very short binary sequences (N =5) permitting a good differentiation of the values of ApEn
for the distinct binary patterns. We refer to these very short sequences as ‘binary patterns
distinguishing them from the 10-minute ‘ binary sequences of heart period dynamics.

To distinguish this use of approximate entropy from the normal use, we call this quantity
‘binary approximate entropy (BinApEn)’. Practically, BinApen is evaluated for each binary
pattern of length 5 in the whole binary sequence generated from the 10-minute RR tachogram.
The average of all BinApEn values is used to quantify heart period irregularity of the binary
patterns.

Shannon entr opy

In contrast to binary approximate entropy, Shannon entropy considers the whole binary
sequence generated from the 10-minute RR tachogram. Shannon entropy gives a number
which characterizes the probability that different binary patterns of length N occur. For avery
regular binary sequence only few distinct patterns occur. Thus Shannon entropy would be
small because the probability for this patterns is high and only little information is contained
in the whole sequence. For a random binary sequence al possible patterns of length N occur
with the same probability and the content of information is maximal. This case is indicated by
maximal values of Shannon entropy.

To formalize this concept, first the probabilities of each pattern of length N is estimated from
the whole binary sequence (28):

(S, Sy ) =2
S S =

ot

where n, . is the number of occurrences of the pattern s;,s,,...,s, and n is the tota

number of patterns. Now, define the entropy estimation

1 o . n
S(N) =~ & Bl 5)10g; s, ...
Spree S

For a better comparison when using different pattern lengths N, N) is divided by N. Thus the
maximal estimation of Shannon entropy is always 1. The properties of this measure are as

follows. If only one binary pattern occurs in the whole sequence, S(N) = 0. If al 2" patterns
are equally distributed in the sequence, i.e. the probability is p=1/2" for al patterns, then
S(N) =1. This means that al N bits are needed to describe the whole binary sequence
properly.

According to the pattern length of the BinApEn algorithm, a length (i.e. embedding
dimension) of N =5 symbols for the subsequences is used. Keeping in mind that each 10-
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minute interval contains approximately 800 heart beats, this guarantees a proper estimation of
the probabilities of all 2° =32 binary subsequences. Deviations from identical distribution of
al binary patterns are observed more easily than for shorter or longer pattern lengths. In the
following this entropy estimation will be referred to as ‘ BinShan'.

Surrogate data

The properties of binary sequences generated from heart period dynamics are still unknown. It
is not known whether nonlinear properties can be found in such binary sequences or if it can
be fully described with the help of linear methods. In other words, does the sequence of
acceleration and deceleration of heart periods already contain nonlinearities or is the nonlinear
information only revealed if the absolute RR intervals are taken into account? In order to
answer this question we use an iterative scheme introduced by Schreiber et. a. (27) to
produce surrogate data. At the moment, this method seems to be the best choice of all
randomization techniques, preserving aimost al linear properties of the original time series
with relatively low computational costs. In contrast to other techniques, the iterative scheme
not only retains the mean and the standard deviation (i.e. the distribution), but also maintains
the power spectrum (i.e. the autocorrelations) of the original time series (relative error
<0.1%). All other properties are randomized. Thus the surrogate data cannot be distinguished
from original data with any linear measure of HRV.

In this study surrogate data were constructed for each 10-minute interval of all 24h-ECGs,
and in a second step the binary sequences were generated as described above. If the binary
sequences derived from original data contain nonlinear properties, the estimation of BinApEn
and BinShan should reveal differences between the original and surrogate data.

Statistics
Dependencies between two variables were quantified by Pearson’s correlation coefficient r.

The dependence between mean BinApEn vs. mean RR and Shannon entropy vs. mean RR
was quantified by the linear regression y=axx+b. To test the hypothesis that nonlinear

components are still observable in the binary sequences, the distribution of differences
between original and surrogate data of slopes and correlation coefficients was used. The
probability of rejecting the null-hypothesis that no difference is observable was calculated
with Student’ s t-test and p<.05 was considered statistically significant.

Results

Approximate entropy

The results for BinApEN of al 236 24-hour ECGs were examined visually by plotting mean
BinApEn against mean RR interval (<RR>) of each 10-minute interval. Figure 2a shows an
example (subject PO101A). A linear dependency between mean BinApEn and <RR> is
observable: the longer the RR interval, the higher mean BinApEn and hence, the more
irregular the binary patterns. The correlation between mean BinApEn and <RR> yielded
r =0.84. Generaly, we found this dependence in al 24h-ECGs. In figure 3a and 4a the
distributions of slopes and correlation coefficients of all ECGs are shown. The distribution of
correlation coefficients has a mean of r =0.78 showing strong correlation between mean
BinApEn and <RR> in al ECGs. Thus a proper evaluation of linear regression was

guaranteed. The distribution of the slopes yielded a mean dope of a=4.21x0'[1/9].
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Fig. 2 Mean BinApEn of 10-minute sequences vs. <RR> of original data (a) and surrogate
data (b). Solid line shows linear regression with slope a. r indicates Pearson’s
correlation coefficient.

Next, we evaluated BinApEn for the surrogate data in a similar fashion. At first glance the
slope of the linear dependence in figure 2b is less steep, a and r are smaller than that of the
original data. However, the distribution of correlation coefficients as depicted in figure 4b
shows that the mean coefficient (r = 0.73) of the surrogate data is only dlightly lower than
that of the original data. The distribution of paired differences of correlation coefficients
between original and surrogate data has a mean of 0.05 (p<0.0001). Thus surrogate data
showed a linear dependence to a dightly lesser extent but it is till feasible to evaluate linear
regression slopes. On the other hand, the distribution of slopes of all surrogate data as shown
in figure 3b reveded a clear reduction of the mean Slope (a=287X0"'[1/g]). The
distribution of paired differences of slopes between original and surrogate data has its mean at
1.35X10*[1/ 5] showing a clear deviation from zero mean (p<0.0001).

We point out that the evaluation of the linear regression depends on the correlation between
mean BinApEn and <RR>. Consequently, the decrease of the slope of the linear regression for
the surrogate data is partly due to a decrease in the correlation between mean BinApEn and
<RR>.
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Shannon entr opy

An example of BinShan of 10-minute intervals plotted against <RR> is depicted in figure 5a
(subject PO101A). Overdl, in all ECGs, as <RR> increased BinShan decreased. This implies
that shorter <RR> could be associated with more equally distributed binary patterns. The
mean value of r (figure 7a, r =-0.56) guaranteed a proper evaluation of linear regression.
The distribution of slopes yielded amean of a=-2.32x10"[1/s] (figure 6a).

For the surrogate data, values of BinShan are generally increased as shown in figure 5b. Thus
a less marked difference between short and long <RR> was observable and hence, r is
reduced (figure 7b, mean r =-0.42). The distribution of slopes was shifted to higher values

(mean a=-1.04X0"[1/9], figure 6b). The distribution of paired differences of Slopes
showed a clear deviation from zero mean (mean a =- 1.28x10 '[1/s], p<0.0001).
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Fig. 5 Shannon entropy of 10-minute sequences vs. <RR> of origina data (a) and surrogate
data (b). Solid line shows linear regression with slope a. r indicates Pearson’s
correlation coefficient.
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Reproducibility of BinApEn and BinShan

Two consecutive 24h-ECGs were available for each subject. The slopes of linear regression of
each subject are used to estimate the reproducibility. The slopes of each subject of ECG A are
plotted against those of ECG B (figure 8). Both entropies yielded strong correlation between
the dlopes of both days (BinApEn: r =0.78, BinShan: r =0.85). This implies a good
intraindividual reproducibility of BinApEn and BinShan. As the slopes showed a broad
distribution this result may aso imply that each subject has its specific slope of linear
regression.
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Fig. 8 @) Slopes of linear regression of BinApEn (ECG A) vs. slopes of linear regression of
BinApEn (ECG B). b) Slopes of linear regression of binary shannon entropy (ECG
A) vs. slopes of linear regression of binary shannon entropy (ECG B). Streaked line
indicates optimal reproducibility.

Discussion

We used binary sequences derived from RR tachograms of 24-hour ECG recordings that
retain only basic dynamical aspects of the RR tachogram, i.e. the acceleration (symbol 0) and
deceleration (symbol 1) of heart beat, to estimate approximate and Shannon entropy. This
kind of dynamic symbolization allowed the examination of stationary as well as many
nonstationary segments because the symbolization of differences between RR intervals
eliminates nonstationarities resulting from a minor bias underlying the RR tachogram. We did
not calculate entropy estimations using a static symbolization (e.g. using the mean RR
interval: al RR intervals above this level are set to 1's and the others are set to 0's). In the
literature this kind of transformation is used to detect so-called ‘forbidden words', i.e. patterns
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in successive RR intervals, that might be of interest in certain cardiac diseases (11;32-34). In
the context of entropy estimations established in this study, the latter transformation is not
useful because it often yields long chains of 1's or 0’s in nonstationary sequences resulting in
minimal entropy estimations for BinApEn and BinShan that might be interpreted spuriously.
Evauation of mean BinApEn of each 10-minute interval exhibits two properties: it strongly
correlated with mean RR interval and it was well reproducible for each subject. Mean
BinApEn demonstrated that short binary patterns were most regular at short RR intervals and
displayed more irregularity with increasing RR intervals. BinShan was maximal for shorter
RR intervals indicating that all binary patterns occur with aimost the same probability, and
was minima for longer RR intervals exhibiting predominance of certain binary patterns
which may result from phase locking with the respiratory rhythm (see below).

We point out that BinApEn and BinShan deal with two different notions of regularity.
BinApEn quantifies the regularity of short binary patterns whereas BinShan quantifies the
regularity of the occurrence of the binary patterns. Thus the two notions complement each
other.

Considering only Shannon entropy would lead to the conclusion that the general behaviour of
heart period dynamics seems to be more regular a longer RR intervals in the sense that the
certain binary patterns predominantly occur whereas other patterns tend to disappear. On the
other hand the results of BinApEn indicate that for long RR intervals the binary patterns in
heart period dynamics were those with highest irregularity. Combining these findings, we can
conclude that although fewer distinct patterns occurred at longer RR intervals, these patterns
were precisely those reflecting greater irregularity. In other words: at longer RR intervals
irregular patterns of heart period dynamics appeared more regularly.

Although we did not differentiate between day time and night time (or sleep stages) we note
that long RR intervals are likely to appear at night while short ones appear during the day.
Thisisillustrated in figure 2 where two distinct regions are separated at a mean RR interval of
approximately 0.85 s. This leads to the conclusion that at night fewer distinct dynamical
patterns of the RR intervals occur more regularly, but the dynamics of these patterns is more
irregular than during the day.

This finding fills the gap between findings of two former studies conducted in our laboratory.
Using the full information of RR interval lengths for the evaluation of ApEn, we could
demonstrate that heart period dynamicsis more irregular at night than during the day, and that
the change from day to night or vice versa is probably accompanied by a phase transition in
the notion of synergetics (i.e. no linear dependence on mean RR interval length) (2). In a
recent study we emphasized that at night cardiac dynamics reveals a predominance of binary
patterns which can be assigned to distinct frequency ratios or even phase locking with some
other modulating rhythm, e.g. respiratory rhythm (e.g. 4:1, 7:2, 5:1) (1). For example, if 5:1
phase locking is present the binary pattern 11001 must occur predominantly and cyclically
recurrent. This predominance was interpreted as an increase of heart period regularity and an
augmentation of musical rhythmicity in cardiac dynamics. In the present analysis, this pattern
was identified as one of the most irregular patterns, i.e. with the highest value of BinApEn
(20) leading to high values of mean BinApENn. Thus the predominance of binary patterns that
result from frequency or phase locking ratios may still lead to strong irregularities within the
binary patterns. We point out that synchronization in physiological systems is most often an
intermittent phenomenon, detectable during short periods of time with changing locking ratios
(26;29). A further distinction of irregularities between synchronized and non-synchronized
sequences has till to be established.

The use of surrogate data resulted in a reduction of the slopes of the linear regression between
mean BinApEn and mean RR intervals. For short RR intervals mean BinApEn dlightly
increased and for long RR intervals mean BinApEn dlightly decreased. The values of mean
BinApEn of binary sequences generated from completely random sequences (independent



Cysarz et. al.: Entropiesin heart period dynamics H814-9 13

identical distribution) tend to the value of » 0.37. (Note that by construction, purely random
sequences are not maximally irregular in the sense of BinApEn, see e.g. (19).) This indicates
that the randomization procedure destroyed some inherent nonlinear properties because the
values of mean BinApEn tended towards the stated value although almost all linear properties
were kept constant. The results for BinShan of the surrogate data can be interpreted in a
similar fashion. In conclusion, the dynamical properties under consideration cannot solely be
described with linear methods but aso show evidence of nonlinearities. Moreover, even
binary sequences contain nonlinear properties that cannot be described with measures of HRV
derived from linear time series analysis.

By focussing on the beat-to-beat acceleration and deceleration of heart periods, only fast-
modulating rhythms in heart period dynamics are captured, i.e. changes in heart periods due
to respiratory sinus arrhythmia (RSA) and other parasympathetic activity. The effects of
slower rhythms that influence the heart periods, e.g. the blood pressure or slower variations
can be neglected because they only give rise to a bias underlying the fastest modulation.
These modulations only affect the symbolization scheme if the bias exceeds the modulations
of the RSA. Hence, our results are primarily attributed to the vagal activity on the cardiac
system. It iswell known that the vagal influence shows a circadian pattern with an increasing
strength at night (4). Thisis in accordance with the aforementioned binary pattern types that
occur predominantly at longer RR intervals and may indicate frequency or phase locking
between heart beat and respiration, but reveal at least certain frequency ratios between these
two interacting systems. Keeping our results in mind, the interpretation of a HRV power
spectrum can be extended. On the one hand, a pronounced modulation of heart periods by
RSA causes high power in the respiratory frequency band. This implies that the heart periods
are modulated more regularly. On the other hand, the same modulation may result in more
irregular patterns of heart period dynamics attributing to an increase of complexity.

Moreover, the entropies of binary heart period dynamics turned out to be highly reproducible
for each subject. This fact supports the findings that each healthy individual maintains the
dynamical properties of the heart periods at least over two days (1). Further investigations
may show how these properties depend on age and are affected by cardiovascular and
autonomic diseases.

In conclusion, the findings of this study have demonstrated that the binary symbolization of
RR interval dynamics, which at first glance seems to be an enormous waste of information,
gives an important key to a better understanding of norma heart period regularity.
Furthermore, differential binary symbolization till enables the identification of nonlinear
dynamical properties.
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